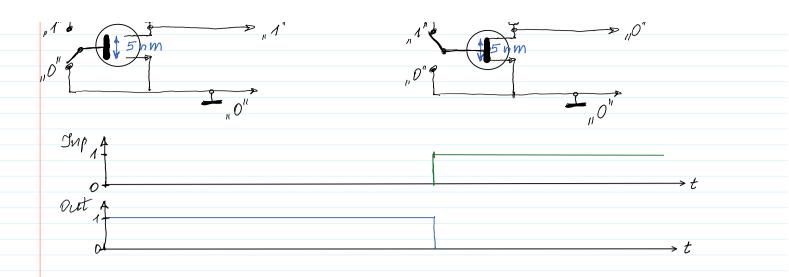
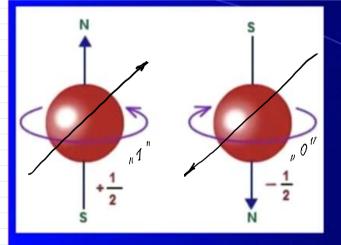

Kolis

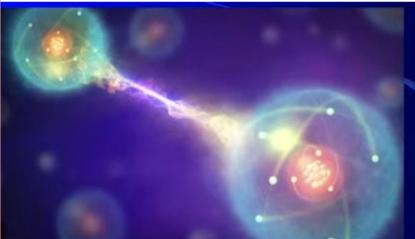
https://docs.google.com/spreadsheets/d/1b_oAjNuO2_eTI2KwPiDsgEdZa-hBfene/edit?gid=1662592439 #gid=1662592439

Michio Kaku https://www.youtube.com/watch?v=_OjRCIPzU6Y


One day, transistors will be as small as atoms. We will compute not on bits, but q-bits (quantum bits). It is still decades away. Will Silicon Valley become a Rust Belt?



To walk through a maze, a digital computer records each and every turn for each path. This is tedious and slow. In a quantum computer, all paths are computed SIMULTANEOUSLY. This vastly increases the power of the quantum computer.


https://fb.watch/vlEogSoMB8/

23 min
https://www.youtube.com/watch?v=gfUEUhDbGXA
(15) m (15) m

In a magnetic field, an atom can spin up or down. This represents 0 and 1. But in a quantum computer, atoms can spin simultaneously in ALL directions. So a quantum computer is infinitely more powerful than a digital computer.

In a digital computer, each transistor is independent of each other.

In a quantum computer, all atoms are entangled with each other, with information flowing between them, increasing their power.

	In a quantum comput slightest vibration can calculation. To keep a vibrating coherently, y cool the quantum com absolute zero,	ruin the toms	
System of linear equations:	Alex, Bob, Ce	cilia - are programmers.	
In Tuesday Alex worked 2 ho	CBDC. our, Bob worked 2 hours, Ceo ours, <mark>Bob</mark> worked 1 hour, Ceo	cilia worked 3 hours: they all earn cilia worked 2 hours: they all earn cilia worked 3 hours: they all earn	ed 10 0 .
The rewards per hour for Alex,	Bob, Cecilia are earning per h Bob, Cecilia y z	iour?	~{
Then to find 3 unknown variable	es x, y, z we have a system 3 o	of linear equations:	
Then to find 3 unknown variable	es x, y, z we have a system 3 (of linear equations:	
$1^*x + 2^*y + 3^*z = 14 $ (1)			
$2^{*}x + 1^{*}y + 2^{*}z = 10$ (2)			
$3^*x + 2^*y + 2^*z = 13$ (3)			
This system of equations can be Where $\boldsymbol{w} = (x, y, z)$ is vector of u Transposed vector \boldsymbol{s} we denote This data in Octave is formed in	nknown salaries x, y, z and s by s' then it can be written ir	is a vector of total salaries of ever	ry day written in column.
>> M=[1 2 3; 2 1 2; 3 2 2]		>> s=[14;10;13]	>> st=s'
M =	W	s =	st =
(1 2 3)	x	(14)	14 10 13
(212) 🗶 (y ==	10	
3 2 2	, z /	13	
E * 1 E			
5*z = 15 5 ⁻¹ * 5*z = 5 ⁻¹ *15> z = 3	M*w = s	>> Mi=inv(M) % M - 3	>>I=Mi*M
5 - " 5 "Z = 5 - "15> Z = 3	$M^{-1} * M^* w = M^{-1} * s$	Mi =	
	$(1)^* w = M^{-1} * s$	-0.4000 0.4000 0.2000	1.0000 0.0000 0.000
m*z = s m ⁻¹ *m*z = m ⁻¹ *s	$w = M^{-1} * s$	0.4000 -1.4000 0.8000	-0.0000 1.0000 0.000
$m^{-1} m^{-1} z = m^{-1} s$ 1*z = m ⁻¹ *s	vv — IVI S	0.2000 0.8000 -0.6000	0.0000 0 1.000
⊥ z = m ^{-⊥} S		0.2000 0.0000 -0.0000	0.0000 0 1.000

. .

111 2 - 3	· · · · · · ·		
m ⁻¹ *m*z = m ⁻¹ *	s $w = M^{-1} * s$	0.4000 -1.4000 0.8000	-0.0000 1.0000 0.0000
1*z = m⁻¹ *s		0.2000 0.8000 -0.6000	0.0000 0 1.0000
z = m ⁻¹ *s	>> ww=Mi*s		
	ww =		
	1		
	2		
	3		
	-		

In Thursday Alex worked 3 hour, Bob worked 3 hours, Cecilia worked 1 hour: they all earned 12 \mathcal{D} . This 4-th condition yields the 4-th equation of the form: $3^*x + 3^*y + 1^*z = 12$ (4)

Then we have the following system of 4 equations:

$1^*x + 2^*y + 3^*z = 14$	(1)	Owocollefined linear system
2*x + 1*y + 2*z = 10	(2)	•
3*x + 2*y + 2*z = 13	(3)	of equations
3*x + 3*y + 1*z = 12	(4) J	1 ,

Let's consider the system consisting of (1), (2), (3) equations and their matrix denoting by M123, and the system consisting of (2), (3), (4) equations and their matrix denoting by M234

1*x + 2*y + 3*z = 14	(1)	2*x + 1*y + 2*z = 10	(2)
2*x + 1*y + 2*z = 10	(2)	3*x + 2*y + 2*z = 13	(3)
3*x + 2*y + 2*z = 13	(3)	3*x + 3*y + 1*z = 12	(4)

The matrices of these two systems of equations we denote by M123 and M234 respectively. The salaries vectors of these two systems of equations we denote by s123 and s234 respectively. The unknown variables x, y, z of these systems we denote by the vectors w123 and w234 respectively. It is evident that vectors w123 and w234 satisfying both systems are equal, i.e. w123 = w234 = w.

>> w=[1;2;3]
w =
1
2
3

>>	M123=[1 2 3; 2 1 2; 3 2 2]	>> s123=[14;10;13]	>> M234=[2 1 2; 3 2 2; 3 3 1]	>> s234=[10;13;12]
M1	23 =	S123 =	M234 =	s234 =
1	2 3	14	$(2 \ 1 \ 2) \ /x$	(10)
2	1 2	10		
3	2 2	13	(322)*(y) ===	13
-			(3 3 1) (z)	1 2/
	M123i=inv(M123)			
	23i =		>> M234i=inv(M234)	
			M234i =	
-0	.4000 0.4000 0.2000			
0.	.4000 -1.4000 0.8000		-4 5 -2	
0.	.2000 0.8000 -0.6000		3 -4 2	
			3 -3 1	
>>	I=M123i*M123			

016 011 Post-Ouantum-1 Page 4

0.2000 0.8000 -0.6000		3	· · <u>·</u> · -3 1		
>> I=M123i*M123		>>	I=M234i*M234		
1.0000 0.0000 0.0000 -0.0000 1.0000 0.0000 0.0000 0 1.0000		6	0000e+00 -8.88 🚱-16 5.66 Çe-16 1.0000e+00	2.2 20 4e-16	
>> w123=M123i*s123 w123 = 1		>>	5.66 1) e-16 2.22 0 e-16 w234=M234i*s234 234 =	1.0000e+00	
2 3		1 2 3			
Let's change a little the in	nitial system of 4 e	quations by adding to	the right side -1, 1, or 0 a	at random.	
1*x + 2*y + 3*z = 14 2*x + 1*y + 2*z = 10	(2) 2	*x + 2*y + 3*z = 14 - *x + 1*y + 2*z = 10 +	0 2*x + 1*y -	+ 3*z = 13 = s1e + 2*z = 10 = s2e	
3*x + 2*y + 2*z = 13 3*x + 3*y + 1*z = 12		*x + 2*y + 2*z = 13 + *x + 3*y + 1*z = 12 -	-	+ 2*z = 14 = s3e + 1*z = 11 = s4e	

Then we introduce the erroneous vector for the system consisting of (1), (2), (3) equations denoting it by s123, and the erroneous vector for the system consisting of (2), (3), (4) equations denoting it by s234. The corresponding matrices M123 and M234 are introduced above.

>> s123e=[13;10;14]	>> s234e=[10;14;11]
s123e =	s234e =
13	10
10	14
14	11

Then the solution of the first system of equations can be found by computing the inverse matrix to the matrix M123 we denote by M123i, and

the solution of the second system of equations can be found by computing the inverse matrix to the matrix M234 we denote by M234i

>> w123e=M123i*s123e	>> w234e=M234i*s234e
w123e =	w234e =
1.6000	6.0000e+00
2.4000	-2.0000e+00
2.2000	7.1054e-15

As we see solutions differs.